

LA-UR-21-31392

Approved for public release; distribution is unlimited.

Title: QA Testing of Si Diodes

Author(s): Dowd, James Franklyn

Intended for: Report

Issued: 2021-11-17

QA Testing of Si Diodes

Jim Dowd

Nov 8, 2021

Dead Layer

Electrically non-responsive region outside of depletion region

- Concerns about large dead layers in poor quality diodes
 - Unpolished backs
 - State of dead layer unknown
- Large dead layers reduce energy resolution of detector
 - Energy loss is not measurable for particles with unknown energies
 - Stacked diode configuration compounds uncertainty
- Determine bias voltage needed for full depletion
 - Characterization and measurement of dead layer
 - Incremental variations in bias setting to optimize configuration
 - Dead layer is minimized at optimum bias voltage

Partially Depleted Detector

Fully Depleted Detector

Procedure

- Designed and constructed vacuum chamber
 - Collaborated with a mechanical engineer for custom components
- Measured ADC response with nominal reverse bias voltage
 - Reference measurement
 - -200 V bias
 - Alpha particles incident on front of detector
- Measured ADC response at 10 V increments
 - -150 V to -250 V bias
 - Alpha particles incident on back face of detector

AM-241 Source Collimator Si Diode

Analysis

- Apply Gaussian fit to each response curve
 - Only applied around highest peak and falling edge of distribution
- Mean of Gaussian
 - ADC channel of primary α-energy
- Front Face
 - Negligible dead layer
 - Three main Am-241 peaks are distinct
- Back Face
 - Undefined dead layer
 - Three main Am-241 peaks are smeared together

ADC Channel

Linearity of Response

- 24 hr measurement for maximum peak differentiation
- Gaussians were fit to three main Am-241 α-peaks
- Linear fit applied to the mean values

Linear fit is just over one standard deviation from passing through origin

$$y = 894(19) \frac{Channels}{MeV} x + 132(106)Channels$$

Channel 0 = 0 MeV

Reasonable Approximation!

Back Face: -150 V Bias

Example of Best

Sample 5909704 - Back Side: A = 22.69, μ = 4579.40, σ = 30.56

Example of Worst

Sample 5904749 - Back Side: A = 5.94, μ = 2643.90, σ = 280.14

Back Face: -160 V Bias

Example of Best

Sample 5909704 - Back Side: A = 32.69, μ = 4595.64, σ = 28.29

Example of Worst

Sample 5904749 - Back Side: A = 5.07, μ = 3040.00, σ = 258.13

Back Face: -170 V Bias

Example of Best

Sample 5909704 - Back Side: A = 42.06, μ = 4606.56, σ = 25.55

Example of Worst

Sample 5904749 - Back Side: A = 4.77, μ = 3347.94, σ = 335.57

Back Face: -180 V Bias

Example of Best

Sample 5909704 - Back Side: A = 40.26, μ = 4612.15, σ = 27.67

Example of Worst

Sample 5904749 - Back Side: A = 4.82, μ = 3674.16, σ = 313.38

Back Face: -190 V Bias

Example of Best

Sample 5909704 - Back Side: A = 42.73, μ = 4616.78, σ = 25.95

Example of Worst

Sample 5904749 - Back Side: A = 5.63, μ = 4105.46, σ = 185.89

Back Face: -200 V Bias

Example of Best

Sample 5909704 - Back Side: A = 43.51, μ = 4619.88, σ = 24.07

Example of Worst

Sample 5904749 - Back Side: A = 8.19, μ = 4395.84, σ = 76.63

Back Face: -210 V Bias

Example of Best

Sample 5909704 - Back Side: A = 42.76, μ = 4621.04, σ = 24.03

Example of Worst

Sample 5904749 - Back Side: A = 13.54, μ = 4493.19, σ = 52.59

Back Face: -220 V Bias

Example of Best

Sample 5909704 - Back Side: A = 43.87, μ = 4621.27, σ = 24.10

Example of Worst

Sample 5904749 - Back Side: A = 24.68, μ = 4543.95, σ = 33.34

Back Face: -230 V Bias

Example of Best

Sample 5909704 - Back Side: A = 42.79, μ = 4623.13, σ = 25.76

Example of Worst

Sample 5904749 - Back Side: A = 34.71, μ = 4570.03, σ = 25.87

Back Face: -240 V Bias

Example of Best

Sample 5909704 - Back Side: A = 43.12, μ = 4626.40, σ = 22.23

Example of Worst

Sample 5904749 - Back Side: A = 43.14, μ = 4577.14, σ = 28.64

Back Face: -250 V Bias

Example of Best

Sample 5909704 - Back Side: A = 42.76, μ = 4623.42, σ = 25.02

Example of Worst

Sample 5904749 - Back Side: A = 48.84, μ = 4589.64, σ = 24.13

Analysis – cont.

• ADC gain is calculated from the reference measurement and is simple linear scaling: C^n

 $f_{gain}^n = \frac{C_{ref}^n}{E_{\alpha}}$

• Gaussian fits for each measurement scaled by the gain:

$$E_i^n = C_i^n f_{gain}^n$$

• Energy loss of the α particle: $\varepsilon_i^n = E_\alpha - E_i^n$

• Dead layer thickness is then: $\Delta x_i^n = \frac{\varepsilon_i^n}{dE/dx}$

$dE/dx = 0.1336 \, MeV/\mu m$

n = Sample number

i = Bias voltage

ref = Reference measurement

 $C_i^n = ADC$ ch. of mean of Gauss. Fit

 $E_{\alpha} = \text{Energy of primary } \alpha$

 E_i^n = Energy of largest peak

 Δx_i^n = Dead layer thickness

dE/dx = Energy loss per distance

Optimal Bias Setting Results

- Optimal bias conditions:
 - Response curve is approximately Gaussian
 - i.e. minimal tail on distribution
 - The mean of Gaussian fit stabilizes
- Inconsistent optimal bias voltage
 - Majority of diodes optimally biased to 210 or 220 V
 - Refutes vendor claim of 200 V
 - Some required ≥270 V

Number of Large Diodes per Optimal Bias Setting

Dead Layer Results

- Small dead layer relative to diode thickness (~1 mm)
 - Mean = $3.54 \mu m$ for large diodes
 - Mean = $3.61 \, \mu m$ for small diodes
- Surprisingly consistent thicknesses
 - Large distribution of optimal bias settings
 - Large variations in response curve shapes below depletion

Dead Layer

Conclusions

- Dead layers were small and consistent
- Diodes have an approximately linear energy response from 0 to 5.5 MeV
- Optimal bias setting showed large variation and differed from vendor claims
 - Did not correlate with dead layer or batch number
- Sufficient quantity of diodes were salvaged to meet near future needs
 - Now have time to find another vendor that can meet requirements

Thank You

Backup Slides

Experimental Setup

Apparatus

The Am-241 Source (Green) was collimated (Purple) and mounted on a linear actuator

Diodes (Blue) were mounted on rotational actuator, which allowed for measuring both sides without breaking vacuum

Electronics

Output signal from diodes and a pulser signal were fed into the pre-amp

Pulser served as a check for drift in the gain, as well as, an indicator of the inherent noise in the system

Front Face: -200 V Bias Reference Measurement

Sample 5909704

Sample 5909704 - Front Side: A = 103.05, μ = 5046.78, σ = 8.94

Sample 5904749

Sample 5904749 - Front Side: A = 137.48, μ = 5010.61, σ = 6.67

Back Face: Dead Layer vs. Bias

Sample 5909704

Sample 5904749

Sample 5904749 - Dead Layer

